Главная · Программы · Струйная печать: в погоне за качеством. Эволюция струйной печати

Струйная печать: в погоне за качеством. Эволюция струйной печати

До какого-то периода слово «печать» ассоциировалось либо с работой типографии, либо с лазерными завсегдатаями больших офисов. Струйная печать отличалась тем, что представляла собой процесс перенесения картинки или текста за счет пластины дюз и жидкого красителя.

Казалось бы, понятие струйной печати стало входить в обиход только недавно, после того, как струйные принтеры стали доступны обычному пользователю. Однако, история их развития охватывает почти 200 лет.

Рисунок ниже иллюстрирует эволюцию струйной печати от самого ее зарождения до современности.

Этапы развития струйной печати

Теоретические разработки

Теоретические основы струйной технологии печати истоками уходят в 1833 год. Именно тогда Феликс Савар, французский физик и изобретатель, выявил интересную закономерность: в результате распыления жидкости через отверстия с микроскопическим диаметром (дюзы) формируются идеально ровные капли. И лишь через 45 лет, в 1878 году, этот феномен математически описал лорд Рейли, лауреат Нобелевской премии.

Однако ранее, в 1867 году, Уильям Томпсон запатентовал идею непрерывной подачи чернил (Continuous Ink Jet). Он использовал электростатические силы, чтобы контролировать распыление чернил и жидкого красителя на бумажный носитель. На основе этого принципа Уильям Томпсон сконструировал самопишущие приборы, необходимые для работы электрических телеграфов.

Непрерывная печать

Знаменательным для струйной технологии печати стал 1951 год — компания Siemens получила патент на струйный принтер, первый в своем роде. В его основе лежала технология непрерывной подачи чернил. Чуть позже многие мировые производители печатающей техники переняли эту технологию и продолжили ее совершенствование.

Предшественники современных струйных печатающих устройств были довольно громоздкими, оснащёнными различными баллонами, насосами и прочими подвижными частями, прихотливыми в использовании и, к тому же, стоили больших денег. Работали такие принтеры очень медленно, да и не без недостатков: они могли пропускать чернила при печати, что было не очень-то удобно и безопасно.

Печать по требованию

Процесс зародился в 60-х годах этого столетия, когда профессору из Стенфордского университета удалось получить одинаковые по объему и удалённые друг от друга на равном расстоянии чернильные капли. Для этого он использовал волны давления, производимые вследствие движения пьезокерамического элемента. Такая система называлась «Drop-on-demand», в переводе с английского «капли по требованию». Технология позволила отойти от использования сложной системы рециркуляции чернил, системы зарядки, а также исключить отклонения капель.

Впервые печать по требованию применили в 1977 году в печатающих устройствах PТ-80 компании Siemens, а спустя некоторое время (1978 год) в принтере Silonics. Позже данный способ печати продолжил свою эволюцию: технология развивалась и становилась основой все новых и новых моделей струйных принтеров для коммерческого использования.

Наиболее дорогостоящей деталью в принтере была, да и сейчас остается, печатающая головка. Её невозможно было «безболезненно» заменить, как это происходило с картриджем. Поэтому пользователи находили новые алгоритмы взаимодействия. Например, чтобы предотвратить засорение дюз печатающей головки пузырьками воздуха или остатками засохшей краски, принтер старались использовать даже когда в этом не было особой необходимости. И все для того, чтобы не допустить длительного простоя печатающего устройства.

Еще в 70-е годы ХХ века появились предпосылки цветной печати. Шведский профессор Херц нашел способ воспроизводить всевозможные оттенки серого благодаря методу регулирования плотности нанесения капель. Это позволило печатать не только текст, но и различные изображения, передавая градации серого цвета.

Пузырьковая печать

Технологией пузырьковой печати мы обязаны компании Canon. В конце 70-х годов ее специалисты явили миру технологию струйной печати, неизвестную ранее — «Bubble Jet» или «пузырьковую печать». Принцип работы этих струйных принтеров заключается в следующем: в дюзе размещен микроскопический термоэлемент, который мгновенно нагревается до 500оС как только на него воздействует ток. При нагреве чернила закипают, внутри камеры образуются воздушные пузырьки (bubbles), под действием которых из дюзы на бумагу выталкиваются равные объёмы чернил. Как только чернила перестают нагреваться и охлаждаются до прежней температуры, пузырьки лопаются, а в дюзу втягивается следующая порция чернил. Таким образом обеспечивается беспрерывная печать.

Принцип пузырьково-струйной технологии печати

Как только в 1981 году компания Canon представила пузырьково-струйную технологию на выставке Grand Fair, та сразу заинтересовала общественность. И уже в 1985 году свет увидел Canon BJ-80, первый монохромный пузырьковый принтер. Спустя 3 года появился Canon BJC-440, первый широкоформатный принтер, использующий ту же технологию. Он уже мог печатать в цвете с разрешением 400 dpi.

Расходы на печать с технологией пузырьково-струйной печати относительно невысоки. Однако стоимость обслуживания принтера возрастает оттого, что печатающая головка встроена в чернильные картриджи, а не в принтер. Но есть и обратная сторона медали: сохраняется работоспособность устройства в случае использования неоригинального картриджа.

Термическая печать

Эпоха термической печати началась к концу 90-х годов, хотя компании HP и Canon приступили к ее разработке еще в 1984 году. Все дело в том, что не удавалось добиться необходимого сочетания качества и стоимости печати, а также скорости работы. Чуть позже к гигантам индустрии присоединилась и компания Lexmark. В этом тандеме эти крупнейшие компании добились высокого разрешения печати и создали подобие современных принтеров.

Полученная в результате разработок технология стала именоваться «термической печатью» (thermal inkjet). Эту технологию использовала первая линейка струйных принтеров HP — ThinkJet.

Струйные принтеры HP THinkJet

Принцип термической печати заключается в увеличении объёма чернил при нагреве. Температура нагревательного элемента внутри печатающей головки повышалась под воздействием нагревательного элемента. Чернила, расположенные близко к нагревательному элементу, при нагреве начинают испаряться. Формируются пузырьки, которые выталкивают из дюзы определенное их количество. В результате понижения давления в печатающую головку поступает такой же объем чернил. Этот процесс повторяется с высокой цикличностью до 12 тысяч перезаправок в секунду. Печатающая головка на основе термоструйной технологии состоит из большого количества микроскопических дюз и эжекционных камер.

Компания HP выбрала непривычный курс — она изготовила сменную печатающую головку, которая является частью картриджа и выбрасывается без особых сожалений вместе с ним. Такой шаг решил проблему долговечности принтера.

Принцип работы термического принтера

Пузырьковые и термоструйные принтеры обладали приемлемой ценой, компактностью, работали бесшумно и обеспечивали широкий цветовой диапазон, благодаря чему заполонили рынок доступных печатающих устройств и практически вытеснили с рынка матричные принтеры.

Пьезоэлектрическая печать

Технология пьезоэлектрической системы печати (Piezoelectric Ink Jet) появилась в 1993 году благодаря компании Epson, которая первая стала применять ее в своих принтерах. Принцип пьезоэлектрической печати основан на свойстве пьезокристаллов изменять свой объём и форму под воздействием силы тока. В строении картриджа одной из стенок выступает пьезоэлектрическая пластина. Она выгибается под влиянием тока и тем самым уменьшает объём чернильной камеры. В результате определенный объем чернил выталкивается из дюзы наружу.

Принцип пьезоэлектрической технологии печати

Плюс стационарной печатающей головки в ее экономичности, ведь ее не приходится менять так же часто, как и картриджи. Однако есть небольшая вероятность, что при смене картриджа в печатающую головку может попасть воздух и закупорить дюзы, повлияв на качество печати.

Современные традиции

Развитие технологий в настоящее время сделала струйные принтеры еще популярней. Их приобретают и для офисного и для домашнего использования благодаря их доступной цене и компактности. Иногда пользователи покупают струйные принтеры для цветной печати как дополнение монохромным лазерным принтерам. Существует мнение, что лазерные устройства быстрее и дешевле справляются с печатью текстовых документов, а струйные — с цветными фотографиями.

В настоящее время стандартом разрешения печати современных струйных принтеров считается 4600х1200 dpi. Но уже существуют и такие устройства, что превосходят этот показатель. Из других способностей струйных принтеров можно отметить печать без полей, а так же встроенный ЖК-дисплей или порт для чтения карт памяти.

Преимущества струйных принтеров.

Самый основной козырь струйных печатающих устройств — это высокое качество цветной печати. Вы можете воссоздавать яркие и реалистичные фотографии с отличной прорисовкой мелких деталей и полутонов. Кроме этого, струйные принтеры практически бесшумны, не требуют длительного времени на разогрев, представлены в широком модельном ряде и доступны в разных модификациях.

Недостатки струйных принтеров.

Главная причина отказа от использования струйника — дороговизна оригинальных картриджей, недолговечность отпечатков из-за выцветания или растекания чернил при попадании жидкости, а также засорение печатающих головок. Хотя решения всех этих недостатков очень просты. Засорения можно побороть стандартной прочисткой головки, а отпечатки сделать более долговечными, используя пигментные чернила. А вот избежать переплаты за оригинальные картриджи помогут альтернативные расходные материалы и чернила, которые на данный момент достигли высоких показателей качества. Отличие от оригинальных чернил составляет не более 2-5%, благодаря чему разница результатов печати неразличима невооруженным глазом.

Много новостей из развития современных принтеров, МФУ и плоттеров можно почитать .

В отличие от термоструйного способа выброса чернил на лист бумаги путем нагрева чернил до высокой температуры и создания избыточного давления пара, при пьезопечати чернила выбрасываются за счет применения силы- кратковременного ударного воздействия.

Принцип работы принтеров с технологией пьезопечати: ударное воздействие пьезокристалла на чернила в ограниченном объеме печатающей головки приводит к выбросу дозированной порции чернил в нужное место на листе бумаги. В современных печатающих головках используются пьезокристаллы, к которым можно применять разную силу тока и изменять период применения тока на кристалл. Это дает возможность менять величину капли чернил в заданных параметрах, силу вылета и толщину струи. Капли чернил ложатся в строго запланированное место в строго запланированном порядке и строго запланированном объеме.

Термоструйная и пьезоэлектрическая технологии используют разные физические принципы для распыления чернил на бумагу, в связи с чем чернила имеют разную вязкость, электропроводность, химический и физический состав и поэтому не являются взаимозаменяемыми.

Главное преимущество технологии печатающих головок Epson - достижение очень высокого разрешения (5760x1440 точек на дюйм при размере чернильной капли 3 пиколитра) и фотографическое качество печати. Сжатие керамики и тот факт, что чернила не нагреваются, дают возможность получить более гладкие капли по сравнению с взрывообразным выбросом чернил из сопла термической головки. Размер капель лучше контролируется в случае пьезоэлектрической головки. Сопла печатающей головки Epson меньше, чем у термических головок (10-15 микрон по сравнению с 20-25 у Canon и 30-50 у НР и Lexmark). И срабатывает она быстрее: 50 кГц против 20 кГц.

Дополнительное преимущество пьезоэлектрической головки - возможность печатать чернилами на основе различных растворителей: масла, сублимационными, твердыми чернилами и т.д. Благодаря этому преимуществу пьезотехнология играет важную роль в области печати на специальных субстратах, таких как непористые материалы, ткани и т.д.

Минусы использования пьезоголовки - ее высокая стоимость и требовательность к качеству чернил. Помимо того, относительно большая масса пьезоголовки вызывает большие вибрации принтеров при скоростной печати и требует повышенного внимания к разработке привода и системы позиционирования.

Все основные производители струйных принтеров используют технологию термоструйной печати. Только Seiko Epson Corporation использует технологию пьезоэлектрической печати. Эта технология защищена более чем 4000 патентов во всех странах.

Компания Epson конструирует свои устройства по следующему принципу: печатающая головка встраивается в аппарат, а чернильные картриджи поставляются в виде чернильниц разного объема от 10 до 50 мл. Это позволяет немного удешевить ежедневную печать, ведь другие производители поставляют картриджи вместе с печатающими головками. Ко всему прочему, пользователь может подключить к своему устройству СНПЧ (систему непрерывной подачи чернил) для еще более качественной деловой печати. Однако при выборе СНПЧ необходимо тщательно выбирать производителя, т.к. рынок насыщен дешевым товаром и некачественными чернилами.

Компания Epson бдительно следит за рынком струйной печати, улавливает его тенденции и изменения. Совсем недавно компания представила устройство Epson L800 с СНПЧ собственной разработки. Линейку данных моделей с низкой себестоимостью печати называют Фабрикой печати. Пользователи таких устройств могут самостоятельно дозаправлять контейнеры с чернилами.

Подводя итоги, заметим, что технологии не стоят на месте и струйная печать отнюдь не умирает, как ей предрекали 3-4 года назад некоторые специалисты в области печати. Твердо можно сказать, что струйная печать может обеспечить относительно недорогой отпечаток высокого качества с большим разрешением.

Картриджи и расходные материалы фирмы Epson без труда поддаются повторной заправке тонером. Наша компания осуществляет Epson, учитывая все особенности их комплектации.

Оформление запроса

Пожалуйста, заполните контактные поля формы


Получать IT-новости

Поля, помеченные * обязательны для заполнения

Краткие характеристики струйной пьезоэлектрической и термоструйной технологии печати

Каталог со струйной пьезоэлектрической технологией печати.

Самые распространенные сегодня принтеры основаны на струйной технологии: измельченный краситель в виде капель распыляется на материал. Обычно, как и в матричных принтерах, печатающая головка движется поперек направления подачи носителя, формируя полосу изображения, а затем носитель сдвигается для печати следующей полосы. Однако вместо иголок в головке имеется множество сопел для выбрасывания краски.

В струйной технологии печати чернилами сложились две технологических ветви:

  • термоструйная, в которой активизация краски и ее выброс происходят под действием нагрева;
  • пьезоэлектрическая, в которой выброс краски происходит под давлением, создаваемым колебанием мембраны.
Пьезоэлектрическая струйная технология

Пьезоэлектрическая система, созданная на базе электромеханического устройства и доведенная до коммерческой готовности компанией Epson (дочерняя компания японской Seiko), впервые была использована в струйных принтерах Epson еще в 1993 году. Успешно используется до сих пор (2011 год).

Система выброса капли

В основе пьезотехнологии лежит свойство некоторых кристаллов, называемых пьезокристаллами (примером могут служить кристаллы кварца в распространенных теперь кварцевых наручных часах), деформироваться под действием электрического тока; таким образом, этот термин определяет электромеханическое явление. Это физическое свойство позволяет использовать некоторые материалы для создания миниатюрного "чернильного насоса", в котором смена положительного напряжения на отрицательное будет вызывать сжатие небольшого объема чернил и энергичный выброс его через открытое сопло. Как и при формировании чернильной струи за счет термических эффектов, размер капли здесь определяется физическими характеристиками эжекционной камеры (firing chamber) и давлением, создаваемым в этой камере за счет деформации пьезокристалла.

Модуляция, т. е. изменение размера капли, осуществляется путем изменения величины тока, протекающего через эжекционный механизм. Как и в термопринтерах, частота выброса под действием пьезоэффекта зависит от потенциальной частоты электрических импульсов, которая, в свою очередь, определяется временем возвращения камеры в "спокойное" состояние, когда она заполнена чернилами и готова к следующему рабочему циклу. Пьезотехнология отличается высокой надежностью, что очень важно, потому что печатающая головка, по чисто экономическим причинам, не может быть частью сменного картриджа с чернилами, как в термических системах, а обязательно должна быть жестко соединена с принтером.

Преимущества и недостатки

Как у термических, так и у пьезоэлектрических систем качество работы определяется многими факторами. Возможность изменения размера точки дает пьезотехнологии определенные преимущества.

С другой стороны, пьезотехнология сталкивается с некоторыми чисто физическими ограничениями. Например, большие геометрические размеры электромеханической эжекционной камеры означают, что плотность размещения сопел по вертикали должна быть меньше, чем у термических аналогов. Это не только ограничивает перспективы дальнейшей разработки, но означает также, что для получения более высокого разрешения и однородности при высококачественной печати требуется несколько проходов печатающей головки по одной и той же странице.

Стационарная печатающая головка в определенной мере экономически выгодна, потому что ее не приходится менять. Однако это преимущество частично обесценивается тем, что существует опасность проникновения воздуха в систему при смене картриджа. При этом сопла закупориваются, качество печати ухудшается, и для восстановления нормальной работоспособности системы требуется провести несколько циклов очистки. Еще одно существующее пока ограничение для пьезосистем касается использования чернил на основе красителей (dye based inks): при использовании пигментных чернил, которые имеют более высокое качество, но при этом обладают и более высокой плотностью, также возникает опасность закупорки сопел.

Перспективы

Пьезоэлектрическая печатающая головка, сконструированная на основе ранее существовавшей технологии, отличается более низкими расходами на разработку, но зато она заметно дороже в изготовлении. В настоящее время такие преимущества пьезоэлектрических головок как высокая надежность и возможность изменения размеров капли весьма существенны и позволяют изготовлять продукцию очень высокого качества.

Вертикальное разрешение

Число вертикальных позиций связано, прежде всего, с числом вертикально расположенных сопел на печатающей головке (линий на дюйм). Поскольку существуют трудности при создании печатной головки, включающей элементы, которые охватывают сразу две вертикальные линии, то два отдельных ряда сопел размещаются рядом друг с другом.

Для достижения приемлемой скорости печати во время каждого прохода печатающей головки должно быть напечатано максимальное число линий. В этой ситуации производитель должен сделать выбор между скоростью (более высокая печатная головка и максимальное число сопел) и производственными затратами (минимальное число сопел).

Горизонтальное разрешение

Число горизонтальных позиций, так называемое число капель на дюйм (dpi), является функцией от частоты, с которой выбрасываются капли, и скорости, с которой печатающая головка перемещается по горизонтальной оси. Управляемое сопло в определенные моменты дискретно выбрасывает капли чернил и таким образом проводит линию.

Главная трудность для производителя состоит в сочетании качества (максимум выбросов капель на строку) и скорости (минимум выбросов капель на строку для достижения более высокой скорости). Скорость выброса капель составляет от 10 до 20 тыс. в секунду. Изменяя эту частоту или скорость перемещения каретки печатающей головки, можно достичь оптимальной плотности горизонтального размещения капель.

Физиологические факторы и цветовое восприятие

Ощущение качества цветного документа тесно связано с физиологией человеческого зрения. С учетом некоторых индивидуальных отклонений глаз человека способен различать только цвета, имеющие длину волн в диапазоне от 380 нм (фиолетовый) до 780 нм (красный). Внутри этого спектра мозг человека может различить около миллиона оттенков цветов (опять же с небольшими индивидуальными различиями).

Воспринимаемый цветовой спектр играет важную роль при зрительной оценке различий в качестве печати документов: принтеры, способные воспроизводить большее число оттенков цвета, будут создавать документы, которым человеческое зрение будет субъективно приписывать более высокое качество.

Число цветов

Общее число возможных цветов, в которые может быть окрашена элементарная точка, соответствует числу адресуемых элементарных цветов. При трех основных цветах можно получить восемь базовых цветов: голубой (Cyan), пурпурный (Magenta), желтый (Yellow), красный (Cyan + Yellow), зеленый (Yellow + Cyan), синий (Cyan + Magenta), белый и черный цвета.

Эта система двоична, поскольку цветовые точки могут присутствовать или нет. Если мы применим принцип полутоновой серой шкалы к этим трем основным цветам, создавая таким образом цветовые оттенки, мы получим 256 оттенков для каждого из трех основных цветов и таким образом 256 в третьей степени возможных цветовых комбинации на один точечный элемент. Другими словами, это число больше, чем может различить глаз человека.

Размер капли

Размер капли представляет сложную функцию от давления, с которым выбрасываются чернила, и диаметра сопла. Обычно размер капли сохраняется неизменным. В определенных случаях размер может изменяться, и эта технология известна как печать с изменяемым размером капли.

Существует определенная связь между размером капли и размером точки, воспроизводимой на бумаге. Теоретически, капля размером 20 пиколитров соответствует точке размером 60 микрон (это приблизительно равно одной четырехсотой части дюйма), тогда как капля размером 2 пиколитра поставит точку 30 микрон, едва видимую человеческим глазом.

Матрица разрешения M

Разрешение - это параметр, наиболее просто поддающийся количественной оценке при определении качества печати документа. Разрешение оценивает точность, с которой точки располагаются на странице.

Матрица разрешения задает для любой заданной точки общее число возможных позиций. При технологии печати с двойной печатной головкой могут быть две различные матрицы: одна для цветной печати, а другая для черно-белой. Матрица позволяет создавать цветовые уровни для каждой элементарной точки. Поскольку разрешение является результатом совмещения двух различных технологических процессов, то горизонтальное и вертикальное разрешение могут отличаться.

Новейшим достижением в струйной печати в свое время являлось горизонтальное разрешение 2400 dpi, которое дает возможность разместить 2400 печатных матриц на дюйм печатной строки, что вдвое превосходит наиболее распространенный в настоящее время стандарт.

Благодаря точности печати и микроскопическому размеру капли 7 пиколитров достигаются столь высокие результаты, что растр изображения становится абсолютно неразличим для человеческого зрения. Разрешение 2400 dpi таким образом предназначается для печати документов, требующих максимально высокого разрешения и безупречного качества.

Поскольку скорость печати в большой степени зависит от количества печатаемых точек, то при печати с разрешением 2400 x 1200 скорость будет несколько меньше, чем при печати с более низким разрешением.


Основой любого процесса струйной печати является процесс создания капель красителя и переноса этих капель на бумагу или любой другой носитель, пригодный для струйной печати. Управление потоком капель позволяет добиться различной плотности и тональности изображения.
На сегодняшний день существует два различных подхода к созданию управляемого потока капель. Первый метод, основанный на создании непрерывного потока капель, так и называется - метод непрерывной струйной печати . Второй метод создания потока капель предусматривает возможность непосредственного управления процессом создания капли в нужный момент времени. Системы, использующие этот метод управления потоком капель, получили название системы импульсной струйной печати .


Непрерывная струйная печать



Краситель, находящийся под давлением, поступает в сопло и разделяется на капли путем создания быстрых колебаний давления, получаемые с помощью какого-либо электромеханического средства. Колебания давления вызывают соответствующую модуляцию диаметра и скорости выходящий из сопла струи красителя, которая разделяется на отдельные капли под воздействием сил поверхностного натяжения.
Этот метод позволяет достигать очень большой скорости создания капель: до 150 тыс. штук в секунду для коммерческих систем и до миллиона штук для специальных систем. Для управления потокам капель используется электростатическая система отклонения. Вылетающие из сопла капли проходят через заряженный электрод, напряжение на котором меняется в соответствии с управляющим сигналом. Поток капель попадает за тем в пространство между двумя отклоняющимися электродами, имеющими постоянную разность потенциалов. В зависимости от полученного ранее заряда отдельные капли изменяют свою траекторию по-разному. Этот эффект позволяет управлять положением печатаемой точки, так и ее наличием или отсутствием на бумаге. В последнем случае капля отклоняется настолько, что попадает в специальный улавливатель.
Подобные системы позволяют печатать точки диаметром от 20 микрон до одного миллиметра. Типичной является точка размером 100 микрон, что соответствует объему капли в 500 пиколитров. Основное применение такие системы нашли на рынке промышленной печати, в системах маркировки товаров, массовой печати этикеток, медицине и пр.

Импульсная струйная печать



Этот принцип создания потока капель предусматривает возможность непосредственного управления процессом создания капли в определенное время. В отличие от систем непрерывного действия, здесь отсутствует постоянное давление в объеме чернил, а при необходимости создания капли генерируется импульсы давления. Управляемые системы принципиально менее сложны в изготовлении, однако для их работы требуется устройство создания импульсов давления примерно втрое более мощно, чем для систем непрерывного действия. Производительность управляемых систем составляет до 20 тыс. капель в секунду для одного сопла, а диаметр капель - от 20 до 100 микрон, что соответствует объему от 5 до 500 пиколитров. В зависимости от способа создания импульса давления в объеме с чернилами различают пьезоэлектрическую и термическую струйную печать.
Для реализации пьезоэлектрического метода в каждое сопло установлен пьезоэлемент, связанный с чернильным каналом диафрагмой. Под воздействием электрического поля происходит деформация пьезоэлемента, благодаря которому сжимается и разжимается диафрагма, выдавливая каплю чернил через сопло. Подобный метод генерации капли используется в струйных принтерах Epson.
Положительным свойством таких технологий струйной печати является то, что пьезоэффект хорошо управляем электрическим полем, что дает возможность достаточно точно варьировать объемов получаемых капель, а значит и в достаточной степени влияет на размер получаемых пятен на бумаге. Тем не менее, практическое использование модуляции объема капель затруднено тем, что изменяется не только объём, но и скорость движения капли, что при движущейся головке вызывает ошибки позиционирования точки.
С другой стороны, производство печатающих головок для пьезоэлектрической технологии оказывается слишком дорогим в пересчете на одну головку, поэтому в принтерах Epson печатающая головка является частью принтера и по стоимости может составлять до 70% от общей стоимости всего принтера. Выход из строя такой головки требует серьезного сервисного обслуживания.




Для реализации термоструйного метода каждое из сопел оборудовано одним или несколькими нагревательными элементами, которые при пропускании через них тока за несколько микросекунд нагреваются до температуры около 600С. Возникающие при резком нагревании газовый пузырь выталкивает через выходное отверстие сопла порцию чернил, формирующих каплю. При прекращении действия тока нагревательный элемент остывает, пузырь разрушается, а на его место поступает очередная порция чернил из входного канала.
Процесс создания капель в термических печатающих головках после подачи импульса на резистор почти неуправляем и имеет пороговую зависимость объема испаряемого вещества от приложенной мощности, поэтому здесь динамическое управление объемом капели в отличие от пьзоэлектрической технологии весьма затруднительно.
Тем не менее, термические печатающие головки обладают самым высоким соотношением производительности и стоимости производства единицы продукции, поэтому термоструйная печатающая головка обычно является частью картриджа и при замене картриджа на новый автоматически происходи и смена печатающей головки. Однако, применение термических печатающих головок требует разработки специальных чернил, которые могут достаточно легко испаряться без возгорания и не подвержены разрушению при термическом ударе.

Печатающая головка Lexmark



Печатающая головка черного картриджа обычного разрешения 600 dpi для ранних моделей (Lexmark СJP 1020, 1000, 1100, 2030, 3000, 2050) имели 56 дюз, расположенных в два зигзагообразных ряда. Печатающая головка для цветных картриджей этих моделей имели 48 дюз разделенных на три группы по 16 дюз для каждого цвета (Cyan, Magenta, Yellow). Принтер Lexmark CJ 2070 использовал иную печатающую головку, которая содержала 104 монохромных дюзы и 96 цветных.
Для производства печатающих головок струйных принтеров Lexmark, начиная с 7000 серии используется печатающие головки, изготавливаемые с применением лазерной технологии прошивки дюз (Excimer, Excimer 2). Первые модели печатающих головок содержали 208 монохромных дюз и 192 цветных.
Для модели Z51 и старшей модели семейства Zx2 и Zx3 была разработана своя печатающая головка с 400 дюзами. В модели Z51 использовалась лишь половина дюз, а остальные работали в режиме горячего резерва, когда как в следующих моделях были одновременно задействованы все дюзы.
Младшие и средние модели семейства Zx2 используют картриджи, являющиеся модификацией стандартных картриджей высокого разрешения, а младшие и средние модели семейства Zx3, новые модели картриджей Bonsai.
Не оставляйте дюзы печатающей головки открытыми в течение продолжительного времени. Если дюзы оставить открытыми - чернила в них засыхают и засоряют каналы, что приводит к дефектам при печати. Картридж следует оставлять в принтере или в специальном боксе гараже »). Нежелательно также дотрагиваться до дюз и контактов руками, так как сальные выделения от кожи могут испортить поверхность.

Характеристики печатающей головки



Период формирования мениска:
Это период времени, необходимый для повторного заполнения камеры чернилами. Он определяет рабочую частоту печатающей головки (от 0 до 1200 Hz).





Скорость капли:
Низкая скорость приводит непрерывному расположению точки.
Высокая скорость приводит к появлению брызг и разводов.




Масса капли определяется:
Размером нагревающего элемента.
Диаметром сопла.
Обратным давлением.





Замечено, что в обычных струйных принтерах капля чернил, попадая на бумагу принимает форму маленького треугольника, поэтому линии при ближайшем рассмотрении выглядят зазубренными. Это связано с тем, что в полете капля деформируется, а при соприкосновении с бумагой - расплывается. Особенно это заметно в низком режиме при экономной печати. Lexmark предлагает принтеры с новой, прогрессивной технологией печати, при которой форма сопел и скорость движения головки сбалансированы так, что капля чернил дают пятна, как равномерные штрихи. Это позволяет сделать линии гладкими, а качество печати почти неотличимы от лазерной печати. Кроме того, такая форма пятна позволяет избежать белесых полос на отпечатке.


Что такое чернила?



Каждый производитель струйных принтеров разрабатывает и совершенствует свой состав чернил, который наиболее адаптирован к выпускаемой технике. У Lexmark основными компонентами чернил для струйных принтеров является:
-Деионизированная вода (85-95% общего объема)
-Пигмент или краситель
-Растворитель (для пигментов)
-Увлажнитель (Humectant)
-Поверхностно-активное вещество (Surfactant)
-Биоцид
-Буфер (стабилизация pH)

Пигмент или краситель . Чернила на основе пигментов (только черные) изготовлены из твердых частиц, находящихся в жидкости. При попадании таких чернил на бумагу жидкость испаряется и частично впитывается, а порошок прилипает к поверхности, не растекаясь по ней. Поэтому чернила на основе пигментов водостойкие, обладают слабым проникновением в волокна бумаги, но они чувствительны к свету.
Чернила на основе красителей - это, как правило, цветные чернила. Краситель растворим в воде и впитывается вместе с ней в толщу бумаги при высыхании. Такие чернила высыхают быстрее пигментных, светоустойчивы, но зато дают в среднем пятен неправильной формы больше, чем последние.
Увлажнитель. Концентрация увлажнителя влияет на вязкость чернил. Этот параметр должен быть оптимален для данного состава чернил и печатающей головки, совместно с которой они будут использоваться. Действительно, с одной стороны, чем больше вязкость, тем хуже чернила растекаются по поверхности бумаги, давая меньший размер точки и тем более четким будет изображение. С другой стороны, слишком большая вязкость приводит к затянутому времени формирования мениска, что ухудшает скорость печати. Обычно, вязкость чернил является ключевым параметром при определении геометрических каналов в печатающей головке.
Поверхностное натяжение влияет на смачиваемость чернилами всех поверхностей, с которыми они соприкасаются, начиная от резервуаров в картридже и кончая поверхностью бумаги. Слишком низкое статистическое поверхностное натяжение приводит к более быстрому высыханию чернил на поверхности бумаги, но при этом средний объем капли при выдавливании чернил из дюз оказывается завышенным. Слишком высокое поверхностное натяжение увеличивает время высыхания, а следовательно ухудшает стойкость изображения при печати.
Уровень кислотности (РН) низкая кислотность приводит к низкой растворимости компонент чернил в воде и как следствие – плохой водостойкости изображения Стандартным считается уровень кислотности в диапазоне от 7.0 до 9.0.
В нутрии картриджа имеются резервуары с чернилами, дюзы печатающей головки и электрические контакты.
Цветной картридж содержит 3 отдельных ячейки для чернил трех разных цветов. В монохромном картридже содержится только одна ячейка с черными чернилами.

Чернила и цвета

Правильная передача цвета изображения на бумагу является высоко технологичным процессом, требующим учета немалого количества факторов, включая субъективную оценку. В первую очередь цветовая передача изображения зависит от химического состава чернил и бумаги, архитектуры принтера.
Обязательным требованием к чернилам является очень тонкий спектральный состав, иначе получаемые при смешении цвета будут «грязными». После высыхания чернила должны оставаться прозрачными, иначе не будет естественного смешения цветов.
Немаловажным фактором является также устойчивость к выцветанию, экологическая чистота и нетоксичность.
Считается, что оптимальный состав чернил ужу известен. Практически у всех производителей они представляют взвесь очень мелких частиц минерального пигмента. С цветными чернилами дело обстоит хуже, поскольку очень трудно подобрать минеральные красители нужного спектрального состава.
В настоящее время процедуры цветопередачи базируются на так называемых цветовых таблицах, которые используются для преобразования цветового пространства, в котором было создано изображение-оригинал, в некоторое «деформированное» цветовое пространство, учитывающее особенности передачи цветов на бумаге чернилами. Обычно, отдельные цветовые таблицы строятся для каждого типа бумаги и оптимизированы для каждого отдельного типа чернил и печатающих головок.

Драйверы Lexmark



Драйверы принтеров Lexmark после установки готовы к печати с автоматическим режимом распознавания объектов, позволяющим получить хорошее качество изображения без предварительной настройки. Автоматический режим также позволяет добиться оптимального сочетания качества и скорости печати документа. Настройки драйвера на специальную бумагу или выбор цветовых таблиц для более контрастного или естественного тона изображения выполняется очень просто в разделе настроек драйвера «Качество документа» (Document Quality)
Драйверы Lexmark серии Color Fine 2 позволяют автоматически определять тип картриджа, тем самым заметно упрощая процедуру настройки всех систем на другой тип картриджа или смену старого на новый. Характерной особенностью драйверов этой серии является их возможность работать с изображением в стандартах sRGB и ICM.
Стандарт sRGB предлагает, что для описания цветного изображения используется аппаратно-независимое цветное пространство, встроенное в OC Microsoft или в средства работы с Internet. Используя стандартизованное RGB-описание цветового пространства UTI-R BT.709, этот стандарт позволяет минимизировать передачу вместе с изображением дополнительной системы информации, связанной с цветовым профилем оборудования, на котором это изображение создавалось. В системной части файла с изображением лишь дается ссылка на стандарт, в котором оно было создано, а положение-получатель активно используется описанием цветового пространства, представленным операционной системой.
Стандарт ICM позволяет более точно определить разнообразие устройств генераций и отображение цветных изображений посредством использования цветных профилей оборудования для каждого типа устройств, генерирующих изображение и отображающих устройств. Однако, такой подход подразумевает, что системная информация, связанная с профилем оборудования, на котором создано изображение предается в месте с этим изображением.

Фотопечать



Серьезной проблемой в струйной печати является правильная передача светлых тонов изображения. Дело в том, что обычные цветовые решения для струйной печати дают точки изображения насыщенного цвета, поэтому для получения бледных оттенков нужно наносить капли чернил достаточно редко. Это приводит к тому, что при передачи очень светлых тонов пятна располагаются так далеко друг от друга, что становится заметна зернистость изображения, а также возникает проблема с передачей в светлых тонах.
Одним из радикальных способов решения этой проблемы является использование дополнительных чернил светлых тонов. В этом случае темные тона получаются за счет заливки осветленными чернилами. Картридж с такими чернилами обычно становится вместо второго картриджа (черного) и содержит чернила осветленного Cyan, осветленного Magenta и черного. Светло желтый тон не используется, поскольку этот цвет воспринимается человеческим глазом без особой разницы как и желтый.

Вконтакте

Одноклассники

Первый пьезоэлектрический принтер был изготовлен компанией Siemens в 1977 году. В качестве электромагнитного преобразователя в нём использовались пьезоэлектрические трубочки, окружённые литой пластмассой. Инициатива Siemens была подхвачена компанией Epson , которая в начале 1985 года представила на суд общественности свой первый пьезоэлектрический принтер Epson SQ-870/1170.

Вместо пьезоэлектрических трубочек, окружённых пластмассой, компания Epson использовала встроенные в печатающую головку небольшие плоские пьезокристаллические пластинки. Двумя годами позже компания Dataproducts предложила использовать в струйных принтерах пластинчатые пьезопреобразователи – плоские длинные пластинки (ламели), связанные с вибрирующим мениском (диафрагмой) чернильного резервуара. Компания Epson по достоинству оценила инновацию Dataproducts, и начиная с 1994 года стала оснащать пластинчатыми преобразователями все принтеры серии Epson Stylus.

Сегодня Epson – это единственная в мире компания, выпускающая пьезоэлектрические принтеры. Для поддержания своего монопольного положения Epson запатентовала технологию пьезоэлектрической печати во всех странах мира. Для этого ей пришлось получить более 4 000 патентов.

Технология пьезоэлектрической печати наглядно показана на рисунке ниже. Раскроем её основные этапы.

Технология пьезоэлектрической печати

Под воздействием электрических импульсов пластинчатый пьезопреобразователь (ламель) выгибается и оказывает давление на мениск чернильного резервуара, к которому он прикреплён. Резервуар, сокращаясь под давлением ламеля, действует по принципу насоса, и выталкивает из сопла микроскопические порции чернил, которые распыляются на бумагу. После вылета чернильной капли ламель получает противоположное напряжение и выгибается в обратную сторону, увлекая за собой мениск резервуара. Объём резервуара при этом увеличивается, за счёт чего в него затягивается новая порция чернил.

Пластинчатые преобразователи совмещают в себе преимущества как трубчатых, так и плоских систем – компактную конструкцию и высокую частоту распыления чернил.

Пьезоэлектрическая печать включает в себя три важных компонента, гарантирующих её качество:

  1. активный контроль мениска;
  2. печать микрокаплями;
  3. регулирование объёма капель.

Активный контроль мениска (Active Meniscus Control) и отсутствие термоэлементов в пьезоэлектрических принтерах предотвращают появление капель-сателлитов (спутников), вылетающих из сопел вслед за основными каплями. Это позволяет избежать ореола вокруг изображения, придаёт отпечаткам отчётливость и улучшает цветопередачу.

Пьезоэлектрический принтер Epson

Пьезоэлектрические принтеры Epson печатают микрокаплями, объём которых составляет всего 2 пл – это самый маленький объём капель среди струйных принтеров (для сравнения: объём микрокапель Lexmark – 3 пл, HP – 4 пл). Микроскопичность чернильных капель, получаемых в процессе пьезоэлектрической печати, позволяет добиться высокого качества и разрешения изображений. Максимальное разрешение пьезоэлектрических принтеров Epson, представленных на российском рынке, составляет 2880х1440 dpi.

Диаметр сопел в пьезоэлектрических принтерах Epson больше диаметра сопел в термоструйных принтерах, что позволяет регулировать размер чернильных капель (Variable Size Droplet технология). Использование микрокапель повышает качество изображения, но снижает скорость печати. Чтобы ускорить процесс печати при удовлетворительном качестве отпечатка пользователь может увеличить объём микрокапель. При этом скорость печати значительно повысится.

Печатающая головка пьезоэлектрического принтера – дорогое высокотехнологическое изделие. Она монтируется на каретке принтера. Соответственно, пьезоэлектрические картриджи – это так называемые «чернильницы» без печатающей головки. По заявлению компании Epson ресурс обычной печатающей головки пьезоэлектрического принтера составляет 5 лет, широкоформатного принтера – 10 лет.